

Political Economy Final exam

Marc Sangnier - marc.sangnier@univ-amu.fr

February 8th, 2016

The exam lasts 120 minutes. Documents are not allowed. The use of a calculator or of any other electronic devices is not allowed.

Exercise 1

Let us consider a society populated by n citizens and a single bureaucrat who is in charge of producing a public good.

The bureaucrat can exert effort $e \in [0, 1]$ to produce the good. Effort e costs the bureaucrat $e^2/2$. Effort is unobserved by citizens. The probability of the public good being produced is e. Each citizen gets utility u(n) if it is produced and 0 otherwise.

A citizen is randomly chosen to be a monitor. She can pay a cost $\alpha m^2/2$ to try to observe whether the good was produced or not. The observation is successful with probability $m \in [0, 1]$. If she observes that the good has not been produced, the monitor pays a signaling cost s to inform other citizens. In that case, the bureaucrat gets punished and suffer a loss p(n).

The timing of decisions is as follows: (i) the monitor announces m, (ii) the bureaucrat chooses e, (iii) the monitor tries to observe whether the public good was produced or not if m > 0, and (iv) payoffs are realized.

1. Determine e^* , the optimal production effort of the bureaucrat, m^* , the optimal monitoring effort of the monitor, and their equilibrium values.	3
2. Comment on how equilibrium e and m vary with α , s , $p(n)$, and $u(n)$.	2
3. Assume $u(n)$ is constant and $p(n) = n$.	
3.1. What kind of situation might be described by these assumptions?	1
3.2. How does the equilibrium situation change with n ?	1
4. Assume $u(n) = 1/n$ and $p(n)$ is constant.	
4.1. What kind of situation might be described by these assumptions?	1
4.2. How does the equilibrium situation change with n ?	1
5. Comment.	1

Exercise 2

5 points

 $\mathbf{2}$

1

1

1

Consider a probabilistic voting framework in which two parties compete to be elected. Each party i = A, B has the following indirect utility function:

$$w_i = -(q - q_i^*)^2,$$

where q is the implemented policy and q_i^* is party i bliss point. Let us assume that $q_A^* = 0$ and $q_B^* = 1$.

Parties announce platforms q_A and q_B that will be implemented should the party win the election. Both parties are uncertain about q_m , the policy preferred by the median voter. They assume that q_m is uniformly distributed between $\frac{1}{2} - a$ and $\frac{1}{2} + a$, where $a \in (0, 1)$. Let us define p_A as the probability that party A wins the election.

- 1. Write down a party's optimization problem and the associated first-order condition. Explain why platforms will be such that parties will never choose their bliss points and will never converge completely.
- 2. Briefly explain why p_A can be expressed as:

$$p_A = \mathbb{P}(q_m - q_A < q_B - q_m)$$

- 3. Solve for the equilibrium policies under the assumption that the equilibrium is symmetric, i.e. $q_A = 1 q_B$.
- 4. Discuss how equilibrium platforms depend on the level of uncertainty as described by a.

Question

Discuss the role of leaders' time horizon in autocracies.

5 points