

Public Economics

Optional intermediary exam

Marc Sangnier - marc.sangnier@univ-amu.fr

February 13th, 2015

The exam lasts 90 minutes. Documents are not allowed. The use of a calculator or of any other electronic devices is not allowed. You can answer either in French or in English.

Exercise 1

In a *transferable voting system* each voter provides a ranking of options. If no option achieves the majority, the option with the lowest number of first-choice votes is eliminated and the votes that were attached to it are transferred to the second-choice options (for voters who first-choice was eliminated). This process proceeds until an option achieves a majority.

- 1. Define what is a Condorcet winner.
- 2. Is it possible for an option that is no one's first choice to win under a transferable voting system?

Consider the following preferences of five voters i = 1, ..., 5 over three alternatives a, b, and c:

	1	2	3	4	5
Most preferred alternative	a	b	b	c	c
	b	a	a	a	a
Least preferred alternative	с	c	с	b	b

- 3. Assume that voters truly express their preferences. What will be the selected option under a transferable voting system? Is this the Condorcet winner?
- 4. Show how strategic voting can affect the outcome of the vote. What will be the outcome of the vote if voters vote strategically?

8 points

1

2

2

Exercise 2

Let us consider an economy populated by 2 individuals—A and B—who consume 2 goods—1 and 2. Individuals' utility function are:

$$U^{A} = \log(x_{1}^{A}) + \log(x_{2}^{A}) + \frac{1}{2}\log(x_{1}^{B}),$$

and

$$U^{B} = \log(x_{1}^{B}) + \log(x_{2}^{B}) + \frac{1}{2}\log(x_{1}^{A}),$$

where x_j^i is the quantity of good j consumed by individual i. Each individual is endowed with 1 unit of income. Let the unit prices of both goods be 1.

- Calculate the decentralized equilibrium situation of this economy.
 Calculate the social optimum if the social welfare function is the sum of individuals' utility functions.
- 3. Compare quantities of good 1 under both situations. Comment.
- 4. Show that the social optimum can be reached in a decentralized framework thanks to a subsidy s placed on good 1 (so, the price of this good is now 1-s), with the cost of this subsidy covered by a lump-sum tax T on each consumer.

Exercise 3

This exercise describes what is known as the tragedy of the commons. Consider a lake that can be freely accessed by a potentially infinite number of fishermen. The cost of sending a boat out on the lake is r > 0. When b boats are sent out onto the lake, $f(b) = \sqrt{b}$ fishes are caught in total. So, each boat catches f(b)/b fishes. The unit price at which fishermen can sell fishes is p > 0, it is not affected by the level of the catch from the lake (i.e. we are reasoning in partial equilibrium). Fishermen's outside option is 0 if they do not fish.

1. Show that the equilibrium number of boats sent out on the lake if fishermen take decentralized decisions can be expressed a:

$$b^* = \left(\frac{p}{r}\right)^2$$

2.	Determine b^o , the number of boats that maximizes total social surplus.	1
3.	Compare b^o and b^* . Why don't the two values coincide?	2
4.	What per-boat tax t would allow to restore efficiency?	2

6 points

 $\mathbf{2}$

 $\mathbf{2}$

1